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Abstract We consider the general continuous time finite-dimensional deterministic system
under a finite horizon cost functional. Our aim is to calculate approximate solutions to
the optimal feedback control. First we apply the dynamic programming principle to obtain
the evolutive Hamilton–Jacobi–Bellman (HJB) equation satisfied by the value function of
the optimal control problem. We then propose two schemes to solve the equation numer-
ically. One is in terms of the time difference approximation and the other the time-space
approximation. For each scheme, we prove that (a) the algorithm is convergent, that is, the
solution of the discrete scheme converges to the viscosity solution of the HJB equation, and
(b) the optimal control of the discrete system determined by the corresponding dynamic
programming is a minimizing sequence of the optimal feedback control of the continuous
counterpart. An example is presented for the time-space algorithm; the results illustrate that
the scheme is effective.
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1 Introduction

The celebrated Pontryagin maximum principle [31] is very effective in solving many optimal
control problems. The necessary condition provided by the principle, combined with the
existence and uniqueness of the optimal control in many practical engineering problems
implies that we can obtain the optimal control by solving a two-point boundary-value prob-
lem.

Unfortunately, the optimal control obtained by the maximum principle is usually not
in feedback form. More seriously, “these sophisticated necessary conditions rarely give an
insight into the structure of the optimal control” [27]. Nevertheless, the maximum princi-
ple provides a possibility of seeking numerically the solution of the optimal control. The
direct and indirect methods [30] are regarded as two basic numerical methods of solving
optimal control problems through necessary conditions. For indirect method that is mainly
the multiple shooting method [29], the optimal control is sought through solving a two-
point boundary-value problem obtained by the Pontryagin maximum principle. However, the
multiple shooting method may come up against the difficulty of “initial guess” [5]. And by
direct approach, the optimal control problem is transformed into a nonlinear programming
problem, and then solved by using either a penalty function method or other methods such as
sequential mathematical programming methods. We refer to [26,32,35] for control param-
eterization method or the so-called direct shooting method. Although there is no “initial
guess” problem for direct method, the simplification for the original problem leads to the
fall of reliability and accuracy, and when the degree of discretization and parameterization
is very high, the solving process gives rise to “curse of dimensionality” [5].

In contrast to maximum principle that deals with only one extremal problem, the Bellman
dynamic programming method, on the other hand, deals with a family of extremals. Once
the Hamilton–Jacobi–Bellman (HJB) equation satisfied by the value function is established,
the optimal feedback control law can be found in terms of the solution to this first order
nonlinear partial differential equation [1].

However, the HJB equation may have no classical solution no matter how smooth its coef-
ficients are, a fact well-known since Pontryagin’s time. To overcome this difficulty, Lions
and Crandall introduced the notion of viscosity solution in the 1980s [9–12,25]. Under this
weak notion, the existence and uniqueness of the solution to HJB equation is guaranteed.
We refer to [4,6,18,19,24,37] for studies of the viscosity solution for infinite-dimensional
optimal control problems.

This paper considers finite-dimensional control systems. When it is difficult (or impossi-
ble) to analytically solve the HJB equation, as it is usually the case, one has to seek numerical
solutions instead.

Note that in seeking the viscosity solution of the HJB equation, additional information is
needed during the process. Specifically, we need to have the gradient of the value function.
For the purpose of numerical solution, some specially defined differences can be used to
replace the required gradient that usually does not exist in the classical sense. This replace-
ment was justified by our simulation practice [19,20] for some large inertial systems. Fur-
thermore it was shown in [17] that some simple difference scheme may be used to produce
numerically the approximation of the viscosity solution. More recent efforts in solving numer-
ically the HJB equation for finite-dimensional control problems can be found in [7,8,13–
16,22,23,28,33,34].

The optimal feedback control law is typically constructed numerically in two steps. The
first step obtains an approximation to the viscosity solution of HJB equation, which can
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be done by either a time-discretization scheme or a time-space discretization scheme. The
optimal feedback control can then be constructed based on the approximation of viscosity
solution, if the convergence of the approximation is proved.

For finite-dimensional optimal control problems with infinite horizon costs, some results
on the approximations of viscosity solution and optimal feedback control are available in lit-
erature, we refer to [2,7,8,15,36]. However, the finite horizon case is more difficult because
of the way that the time is involved in the HJB equation. Although some progress have
also been made in approximation of viscosity solution, see for instance, [3] and [16,17], the
convergence of the approximate solution depends strongly on the introduction of a discount
factor in the cost functional [16] and there are no available convergence results for the optimal
controls.

In this paper, we consider a general deterministic system with finite horizon cost functional
without discount factor. We first discretize directly the HJB equation by a time-discretization
scheme. We then prove, for the time-discretization scheme, some properties introduced in
[3], which are very important to the convergence of the approximate solution of HJB equation
[17]. Using the piecewise linear interpolation, we develop an algorithm for the approximation
of the viscosity solution. Based on the approximation of viscosity solution, an “almost opti-
mal” feedback control law associated with the non-autonomous finite horizon deterministic
problem is then constructed.

For a given T > 0, we consider the following nonlinear finite-dimensional control system:

{
y′(t) = f (y(t), t, u(t)), t ∈ (0, T ],
y(0) = z,

(1.1)

where u(·) ∈ � � L∞([0, T ]; U) is the control, U ⊂ R
m is a compact subset, z ∈ R

n is the
initial value, y(t) ∈ R

n is the state at time t . The cost functional J is defined by

J (u(·)) =
T∫

0

L(y(t), t, u(t)) dt + ψ(y(T )), (1.2)

where L defines the running cost, ψ is the final cost. The optimal control problem is to find
u∗(·) ∈ � such that

J
(
u∗(·)) = inf

u(·)∈� J (u(·)). (1.3)

The dynamic programming method is to consider the following family of optimal control
problems, that is, each system starts from (x, s) ∈ R

n × [0, T ) such that

{
y′(t) = f (y(t), t, u(t)), t ∈ (s, T ],
y(s) = x,

(1.4)

where u(·) ∈ �s � L∞([s, T ]; U). The objective is to find u∗(·) ∈ �s that minimizes the
cost functional of the following

Jx,s (u(·)) =
T∫

s

L(y(t), t, u(t)) dt + ψ(y(T )). (1.5)
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The function w defined by

w(x, s) = Jx,s (u∗(·)) = inf
u(·)∈�s

Jx,s (u(·)) (1.6)

is called the value function of the optimal control problem of (1.4)–(1.6). The dynamic pro-
gramming principle claims that if w ∈ C1(Rn × [0, T ]) then it satisfies the following HJB
equation:⎧⎨
⎩

−∂w
∂s
(x, s)− inf

u∈U

{∇xw(x, s) · f (x, s, u)+ L(x, s, u)} = 0, (x, s) ∈ R
n × [0, T ),

w(x, T ) = ψ(x), x ∈ R
n .

(1.7)

Let us first recall the definition of viscosity solution and some properties of the value
function that we need in the follows.

Definition 1.1 A function w ∈ C(Rn × [0, T ]) is a sub-viscosity solution of (1.7) if for any
x ∈ R

n , w(x, T ) ≤ ψ(x), and for any test function v ∈ C1(Rn × [0, T )), if w − v attains
strictly a local maximum at (x∗, s∗) ∈ R

n × [0, T ) then

−vs
(
x∗, s∗) − inf

u∈U

{
vx

(
x∗, s∗) · f

(
x∗, s∗, u

) + L
(
x∗, s∗, u

)} ≤ 0.

Similarly, a function w ∈ C(Rn × [0, T ]) is a super-viscosity solution of (1.7) if for any
x ∈ R

n , w(x, T ) ≥ ψ(x), and for any test function v ∈ C1(Rn × [0, T )), if w − v attains
strictly a local minimum at (x∗, s∗) ∈ R

n × [0, T ) then

−vs
(
x∗, s∗) − inf

u∈U

{
vx

(
x∗, s∗) · f

(
x∗, s∗, u

) + L
(
x∗, s∗, u

)} ≥ 0.

w is called a viscosity solution of (1.7), ifw is both sub-viscosity solution and super-viscosity
solution of (1.7).

The following Theorem 1.1 is a direct consequence of [11,36].

Theorem 1.1 For system (1.1)–(1.3), assume that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

‖ f (x, t, u)− f (y, s, u)‖ ≤ L f (‖x − y‖ + |t − s|), ∀ x, y ∈ R
n, t, s ∈ [0, T ], u ∈ U,

‖ f (x, t, u)‖ ≤ M f , f (x, t, ·) ∈ C(U), ∀ x ∈ R
n, t ∈ [0, T ], u ∈ U,

|L(x, t, u)− L(y, s, u)| ≤ L L(‖x − y‖ + |t − s|), ∀ x, y ∈ R
n, t, s ∈[0, T ], u ∈U,

|L(x, t, u)| ≤ ML , L(x, t, ·) ∈ C(U), ∀ x ∈ R
n, t ∈ [0, T ], u ∈ U,

|ψ(x)− ψ(y)| ≤ Lψ‖x − y‖, ∀ x, y ∈ R
n,

|ψ(x)| ≤ Mψ, ∀ x ∈ R
n,

(1.8)

where L f ,M f , L L ,ML , Lψ,Mψ are positive constants. Then the function w defined by
(1.6) belongs to BUC(Rn × [0, T ]), the space of bounded uniformly continuous functions
on R

n × [0, T ], and is the unique viscosity solution of the HJB equation (1.7). Moreover,
there exists a constant Lw > 0 such that for any (x, t), (y, s) ∈ R

n × [0, T ],
|w(x, t)− w(y, s)| ≤ Lw(‖x − y‖ + |t − s|).

Our idea of construction of approximation scheme for viscosity solution and optimal feed-
back control comes from the time-discretization dynamic programming principle. We first
design a time finite difference scheme for the HJB equation and show that it does satisfy the
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time-discretization dynamic programming principle of the corresponding discrete control
system. Then a time-space discretization scheme through regular space triangulation for a
closed bounded polyhedron is constructed.

The main contributions of this paper are: (a) the time and time-space approximation
schemes designed are, to our best knowledge, the first such schemes that satisfy the time-
discretization dynamic programming principe for finite horizon problem without discount
factor, and the approximate viscosity solution is shown to be convergent to the continuous
counterpart from the operator point of view. (b) the difference between the time approxi-
mate viscosity solution and time-space approximate viscosity solution constructed through a
suitable space discretion is rigorously estimated, which plays an important role in the proof
of the optimality for the time-space discretization control system and the convergence of
the “almost optimal” feedback control constructed by the time-space approximate viscosity
solution.

We proceed as follows. In next section, Sect. 2, we construct a time-discretization scheme
for the HJB equation (1.7) and show the convergence of the approximation of viscosity solu-
tion to the viscosity solution of associated HJB equation. The time-space discretization and
the proof of convergence are presented in Sect. 3. In Sect. 4, we synthesize “almost optimal”
feedback control laws for both time-discretization and time-space discretization systems, and
show that each feedback control law is a minimizing sequence of an optimal feedback control
law for the original continuous control system. Some convergence rates are also given at the
same time. In Sect. 5, an algorithm is streamlined and the numerical result is presented to
verify the effectiveness of the algorithm. Finally, we give some concluding remarks in Sect. 6.

2 Time-discretization scheme

For each given large positive integer N , subdivide [0, T ] into N equal sub-intervals. Let

s j = jh, j = 0, 1, . . . , N , h = T

N
< 1.

When s = s j+1, j = 0, 1, . . . , N − 1, we discretize the time derivative term in HJB
equation (1.7) by the time backward finite difference:

ws(x, s j+1) ∼= w(x, s j+1)− w(x, s j )

h
,

and discretize the gradient term by the finite difference:

∇xw(x, s j+1) · f (x, s j+1, u) ∼= w(x + h f (x, s j+1, u), s j+1)− w(x, s j+1)

h
.

We then obtain the following time-discretization HJB equation:⎧⎪⎨
⎪⎩
wh(x, s j ) = min

u∈U

{
hL(x, s j+1, u)+ wh

(
x + h f (x, s j+1, u), s j+1

)}
,

x ∈ R
n, j = 0, 1, . . . , N − 1,

wh(x, T ) = ψ(x), x ∈ R
n .

Modify the above scheme for all s ∈ [0, T ), to obtain⎧⎪⎨
⎪⎩
wh(x, s) = min

u∈U

{
(s j+1 − s)L(x, s, u)+ wh

(
x + (s j+1 − s) f (x, s, u), s j+1

)}
,

x ∈ R
n, s ∈ [s j , s j+1), j = 0, 1, . . . , N − 1,

wh(x, T ) = ψ(x), x ∈ R
n .

(2.1)
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Before going for estimations of scheme (2.1), we need some notations. Define set I and
a family of functions {gh(·), h ∈ I }, respectively, by

I � {h | h = T/N , N ∈ N, N ≥ [T ] + 1},
and

gh(s) =
{ [s/h], s ∈ [0, T ),

N − 1, s = T,

where [a] ∈ N denotes the largest integer that is not greater than a ∈ R.
For brevity in notation, we also use jh,s to denote gh(s) for all s ∈ [0, T ]. By the defini-

tion of gh , we know that jh,s is the unique integer such that s ∈ [s jh,s , s jh,s+1). Obviously,
I ⊂ (0, 1) and jh,s ∈ {0, 1, . . . , N − 1} for all s ∈ [0, T ]. Note that N = T

h increases as
long as h ∈ I decreases.

Proposition 2.1 Suppose that all hypotheses of Theorem 1.1 hold. Then there exists a unique
solution wh to (2.1), and for any x, y ∈ R

n, j = 0, 1, . . . , N − 1, the following estimates
hold true:

(i) |wh(x, s j )| ≤ (N − j)hML + Mψ .
(i i) |wh(x, s j )−wh(y, s j )| ≤ C j‖x − y‖, C j � (T L L + Lψ)(1 + hL f )

N− j ≤ Cmax �
(T L L + Lψ)eL f .

(i i i) |wh(x, s j+1)− wh(x, t)| ≤ (
ML + C j+1 M f

) |s j+1 − t | for any t ∈ [s j , s j+1).
(iv) |wh(x, s)−wh(x, t)| ≤ [ML + L L +C j+1(M f + L f )]|s − t | for any s, t ∈ [s j , s j+1).
(v) {wh, h ∈ I } is uniformly bounded and equi-continuous in R

n × [0, T ]. Precisely,
|wh(x, s)| ≤ T ML + Mψ for any s ∈ [0, T ], |wh(x, s)−wh(y, s)| ≤ [L L +(1+ L f )

Cmax]‖x − y‖ for any s ∈ [0, T ], |wh(x, s)−wh(x, t)| ≤ [ML + L L + Cmax(M f +
L f )]|s − t | for any s, t ∈ [0, T ].

Proof The proof of the existence and uniqueness ofwh is trivial and omitted. We now prove
the properties (i)–(v).

(i) This can be done step by step. Actually, it follows directly from (2.1) that for any x ∈ R
n ,

|wh(x, sN )| = |ψ(x)| ≤ Mψ,

|wh(x, sN−1)| ≤ hML + |wh(x + h f (x, sN−1, u), sN )| ≤ hML + Mψ,

|wh(x, sN−2)| ≤ hML + |wh(x + h f (x, sN−2, u), sN−1)| ≤ 2hML + Mψ,

. . .

|wh(x, s j )| ≤ hML + |wh(x + h f (x, s j , u), s j+1)| ≤ (N − j)hML

+ Mψ, j = N − 3, N − 4, . . . , 1, 0,

proving (i).
(ii) This can be proved similarly as (i). Actually, for any x, y ∈ R

n ,

|wh(x, sN )− wh(y, sN )| = |ψ(x)− ψ(y)| ≤ Lψ‖x − y‖ � C N ‖x − y‖,
|wh(x, sN−1)− wh(y, sN−1)|

≤ max
u∈U

∣∣[wh (x + h f (x, sN−1, u), sN )− wh (y + h f (y, sN−1, u), sN )
]

+ h
[
L(x, sN−1, u)− L(y, sN−1, u)

]∣∣
≤ max

u∈U

{
C N

∥∥x − y + h
[

f (x, sN−1, u)− f (y, sN−1, u)
]∥∥ + hL L‖x − y‖}

≤ [
C N (1 + hL f )+ hL L

] ‖x − y‖ � C N−1‖x − y‖,
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and∣∣wh(x, s j )− wh(y, s j )
∣∣

≤ max
u∈U

∣∣[wh
(
x + h f (x, s j , u), s j+1

) − wh
(
y + h f (y, s j , u), s j+1

)]

+ h
[
L(x, s j , u)− L(y, s j , u)

]∣∣
≤ max

u∈U

{
C j+1

∥∥x − y + h
[

f (x, s j , u)− f (y, s j , u)
]∥∥ + hL L‖x − y‖}

≤ [
C j+1(1 + hL f )+ hL L

] ‖x − y‖ � C j‖x − y‖, j = N − 2, N − 3, . . . , 1, 0,

that is,

C N = Lψ, C j = hL L + (1 + hL f )C j+1, j = N − 1, N − 2, . . . , 1, 0.

Solving the above backward difference equation gives (ii):

C j =
N− j−1∑

l=0

(1 + hL f )
l hL L + (1 + hL f )

N− j Lψ ≤ (N − j)hL L(1 + hL f )
N− j

+ (1 + hL f )
N− j Lψ

≤ [
T L L + Lψ

]
(1 + hL f )

N− j � C j ≤ Cmax � (T L L + Lψ)e
L f .

(iii) For any j ∈ {0, 1, . . . , N −1}, if t ∈ [s j , s j+1), it follows from (ii) that for any x ∈ R
n ,

∣∣wh(x, s j+1)− wh(x, t)
∣∣ ≤ max

u∈U

∣∣wh(x, s j+1)− (s j+1 − t)L(x, t, u)

− wh
(
x + (s j+1 − t) f (x, t, u), s j+1

)∣∣
≤ [ML + C j+1 M f ]|s j+1 − t |.

This is (iii).
(iv) Now we prove (iv). Similar to (iii), for any j ∈ {0, 1, . . . , N − 1}, if s, t ∈ [s j , s j+1),

we have, for any x ∈ R
n , that

|wh(x, s)−wh(x, t)| ≤ max
u∈U

| (t − s)L(x, s, u)+ (s j + 1 − t) [L(x, s, u)− L(x, t, u)]

+ wh
(
x + (s j+1 − s) f (x, s, u), s j+1

)
− wh

(
x + (s j+1 − t) f (x, t, u), s j+1

) |
≤ (ML + hL L)|s − t | + C j+1(M f + hL f )|s − t |
≤ [

ML + L L + C j+1(M f + L f )
] |s − t |.

(iv) is proved.
(v) First, we claim that {wh, h ∈ I } is uniformly bounded in R

n × [0, T ]. Actually, when
s = T , |wh(x, T )| = |ψ(x)| ≤ Mψ, ∀ x ∈ R

n , and for any (x, s) ∈ R
n × [0, T ),

|wh(x, s)| ≤ (s jh,s+1 − s)ML + |wh(x + (s jh,s+1 − s) f (x, s, u), s jh,s+1)|
≤ [1 + (N − jh,s − 1)]hML + Mψ ≤ T ML + Mψ.

Next, when s = T , it has

|wh(x, T )− wh(y, T )| = |ψ(x)− ψ(y)| ≤ Lψ‖x − y‖, ∀ x, y ∈ R
n,
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and for any s ∈ [0, T ),

|wh(x, s)− wh(y, s)|
≤ max

u∈U

{∣∣wh
(
x + (s jh,s+1 − s) f (x, s, u), s jh,s+1

)
− wh

(
y + (s jh,s+1 − s) f (y, s, u), s jh,s+1

)∣∣
+ (s jh,s+1 − s) |L(x, s, u)− L(y, s, u)|}

≤ hL L‖x − y‖ + C jh,s+1
(‖x − y‖ + hL f ‖x − y‖)

≤ [
L L + (1 + L f )Cmax

] ‖x − y‖, ∀ x, y ∈ R
n .

Thus for any s ∈ [0, T ], {wh(·, s), h ∈ I } is equi-continuous in R
n . What remains to be

shown is that for any x ∈ R
n , {wh(x, ·), h ∈ I } is also equi-continuous in [0, T ]. To do this,

we proceed it as follows.
By (iii)–(iv), we only need to consider the case that s, t ∈ [0, T ] are in different intervals,

that is, s ∈ [s jh,s , s jh,s+1), t ∈ [s jh,t , s jh,t +1) with 0 ≤ jh,s < jh,t ≤ N − 1. For any x ∈ R
n ,

from (iii)–(iv), we have

|wh(x, s)− wh(x, t)|

=
∣∣∣∣∣∣wh(x, s)− wh(x, s jh,s+1)+

jh,t −1∑
l= jh,s+1

[wh(x, sl )− wh(x, sl+1)] + wh(x, s jh,t )− wh(x, t)

∣∣∣∣∣∣

≤
∣∣∣wh(x, s)− wh(x, s jh,s+1)

∣∣∣ +
jh,t −1∑

l= jh,s+1

∣∣wh(x, sl )− wh(x, sl+1)
∣∣ + ∣∣∣wh(x, s jh,t )− wh(x, t)

∣∣∣

≤ C∗
⎛
⎝|s − s jh,s+1| +

jh,t −1∑
l= jh,s+1

|sl − sl+1| + |s jh,t − t |
⎞
⎠ ≤ C∗|s − t |,

where C∗ = maxl=0,1,...,N−1{ML + Cl M f , ML + L L + Cl+1(M f + L f )} = ML + L L +
Cmax(M f + L f ).

Therefore, {wh, h ∈ I } is uniformly bounded and equi-continuous in R
n × [0, T ]. The

proof is complete. �

Before proving the convergence of wh , we need some additional concepts and a prelimi-

nary result.
For any s ∈ [0, T ), let ph(s) = s jh,s+1 − s. Define operator Fh(s, ph(s)) : C(Rn) →

C(Rn) by

Fh(s, ph(s))[φ(·)](x) = min
u∈U

{ph(s)L(x, s, u)+ φ(x + ph(s) f (x, s, u))}, ∀ φ ∈ C(Rn).

(2.2)

For brevity in notation, we also use Fh to denote Fh(s, ph(s)). In this way, the time-
discretization scheme (2.1) can be rewritten as{

wh(x, s) = Fh
[
wh(·, s j+1)

]
(x), x ∈ R

n, s ∈ [s j , s j+1), j = 0, 1, . . . , N − 1,
wh(x, T ) = ψ(x), x ∈ R

n .

(2.3)

The properties of Fh that will be used later are stated in Lemma 2.1 below.

Lemma 2.1 Let Fh be defined by (2.2). Then
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(i) Monotonicity:
For any (x, s) ∈ R

n × [0, T ), φ1, φ2 ∈ C(Rn), if for any u ∈ U,

φ1(x + ph(s) f (x, s, u)) ≤ φ2(x + ph(s) f (x, s, u)),

then

Fh[φ1](x) ≤ Fh[φ2](x).
(i i) Constant translation property:

Fh[φ + c] = Fh[φ] + c, ∀ φ ∈ C(Rn), c ∈ R.

(i i i) Consistency:
For any (x, t) ∈ R

n × [0, T ) and any test function v ∈ C1(Rn × [0, T )),

lim
(y,s)→(x,t)

h→0+
ph(s)

−1 {Fh
[
v(·, s jh,s+1)

]
(y)− v(y, s)

}

= vt (x, t)+ inf
u∈U

{vx (x, t) · f (x, t, u)+ L(x, t, u)},
where ph(s) = s jh,s+1 − s.

Proof Since (i) and (ii) are the direct consequences of definition, we only need to prove
(iii). Now

Fh(s, ph(s))
[
v(·, s jh,s+1)

]
(y)− v(y, s)

= min
u∈U

{
ph(s)L(y, s, u)+ v

(
y + ph(s) f (y, s, u), s jh,s+1

) − v(y, s jh,s+1)

+ v(y, s jh,s+1)− v(y, s)
}

= ph(s) ·
[
vs(y, s̄)+ min

u∈U

{
vy(ȳ, s jh,s+1) · f (y, s, u)+ L(y, s, u)

}]
,

where s̄ = s + θ1 · ph(s), ȳ = y + θ2 · ph(s) f (y, s, u) for some θ1, θ2 ∈ (0, 1). We see that
when h → 0+, it has (y, s) → (x, t), and hence ph(s) → 0+, (ȳ, s̄) → (x, t), s jh,s+1 → t .
The conclusion then follows from the fact v ∈ C1(Rn × [0, T )). �

Theorem 2.1 Suppose that all hypotheses of Theorem 1.1 hold. Let wh be the solution of
(2.1) (or (2.3)) andw be the viscosity solution of (1.7). Then for any compact subset Q ⊂ R

n,

lim
h→0+wh = w uniformly on Q × [0, T ].

Proof Since from (v) of Proposition 2.1, {wh, h ∈ I } is a family of uniformly bounded and
equi-continuous functions on R

n × [0, T ], by the Arezela–Ascoli theorem, for any compact
subset Q ⊂ R

n , there is a subsequence of {wh, h ∈ I } (that we still denote by {wh} without
confusion) such that wh converges to a function w∗ uniformly on Q × [0, T ] as h → 0+.
We show that w∗ is a viscosity solution of (1.7).

For any test function v ∈ C1 (Rn × [0, T )), suppose that (x∗, s∗) ∈ R
n ×[0, T ) is a strict

local maximum point ofw∗−v. Then there exists a closed ball B = B (x∗, s∗) of R
n ×[0, T )

centered at (x∗, s∗) such that

w∗ (x∗, s∗) − v
(
x∗, s∗) > w∗(x, s)− v(x, s), ∀ (x, s) ∈ B\ (x∗, s∗) .

Then there exists a sequence {(xh, sh)} in B such that (xh, sh) ∈ B is a maximum point for
wh − v on B, and

xh → x∗ and sh → s∗ as h → 0+.
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Note that sh ∈ [s jh,sh
, s jh,sh +1). Define ph = s jh,sh +1 − sh . Obviously, ph > 0 and as

long as h > 0 small enough, jh,sh < N − 1 and (xh + ph f (xh, sh, u), sh + ph) ∈ B for all
u ∈ U.

With above preparations, for any u ∈ U, we have

wh(xh, sh)− v(xh, sh) ≥ wh(xh + ph f (xh, sh, u), sh + ph)− v(xh + ph f (xh, sh, u),

sh + ph),

that is,

v(xh + ph f (xh, sh, u), sh + ph)− v(xh, sh) ≥ wh(xh + ph f (xh, sh, u), sh + ph)

−wh(xh, sh)

or

φ1(xh + ph f (xh, sh, u)) ≥ φ2(xh + ph f (xh, sh, u)), ∀ u ∈ U,

where φ1, φ2 ∈ C1(Rn) are defined as

φ1(x) � v(x, sh + ph)− v(xh, sh), φ2(x) � wh(x, sh + ph)− wh(xh, sh), x ∈ R
n .

Apply the operator Fh(sh, ph) toφ1, φ2 and take the monotonicity and constant translation
property of Fh justified by Lemma 2.1 into account, to get

Fh [v(·, sh + ph)] (xh)− v(xh, sh) ≥ Fh [wh(·, sh + ph)] (xh)− wh(xh, sh) = 0.

Divided by ph on both sides above, pass the limit of h → 0+ and use (iii) of Lemma 2.1, to
obtain

vs
(
x∗, s∗) + inf

u∈U

{
vx

(
x∗, s∗) · f

(
x∗, s∗, u

) + L
(
x∗, s∗, u

)} ≥ 0,

which means that w∗ is a sub-viscosity solution of (1.7) by noting the fact wh(·, T ) = ψ(·)
on R

n .
Along the same line, we can also show that w∗ is a super-viscosity solution of (1.7).

Therefore, w∗ is a viscosity solution of (1.7). The result then follows from the uniqueness of
viscosity solution of (1.7). �


3 Space-discretization scheme

In this section, we consider a space approximation of wh . For simplicity, we make a stan-
dard assumption used in [15] that � ⊂ R

n is a closed bounded polyhedron such that for all
sufficiently small h,

x + h f (x, s, u) ∈ �, ∀ (x, s, u) ∈ �× [0, T ] × U. (3.1)

We construct a regular triangulation of � consisting of a finite number of simplices {Ti }
such that � = ∪i Ti . Denote by x j , j = 1, 2, . . . ,M , the nodes of the triangulation. Set

k = max
i

{diam(Ti )}, S = {s j | j = 0, 1, . . . , N }, G = {x j | j = 1, 2, . . . ,M},

where diam(Ti ) denotes the diameter of the set Ti . It is clear that

lim
k→0+ dist(x,G) = 0, ∀ x ∈ �.
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For (xi , s j ) ∈ G × S, define⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vk
h(xi , s j ) = min

u∈U

{
hL(xi , s j , u)+

M∑
l=1

λl
i (u, s j )v

k
h(xl , s j+1)

}
,

i = 1, 2, . . . ,M, j = 0, 1, . . . , N − 1,

vk
h(xi , T ) = ψ(xi ), i = 1, 2, . . . ,M,

(3.2)

where
{
λl

i (u, s j ) ∈ [0, 1], l = 1, 2, . . . ,M
}

is the set of coefficients in the unique convex

linear combination xi + h f (xi , s j , u) = ∑M
l=1 λ

l
i (u, s j )xl ∈ � (by assumption 3.1) with∑M

l=1 λ
l
i (u, s j ) = 1. This convex linear combination is produced in terms of the vertices of

the simplex where xi + h f (xi , s j , u) is located.
In this way, vk

h is well-defined on G × S. Moreover, similar to Proposition 2.1, there exists
a unique solution vk

h ∈ B(G × S) to (3.2). Here, B(S0) denotes the space of all bounded
functions on the region S0.

Based on scheme (3.2), we define a piecewise linear function wk
h ∈ B(�× [0, T ]) by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

wk
h(x, s) =

M∑
i=1

λi (x)
[
µ(s)vk

h(xi , s j )+ (1 − µ(s))vk
h(xi , s j+1)

]
,

x ∈ �, s ∈ [s j , s j+1), j = 0, . . . , N − 1,

wk
h(x, T ) =

M∑
i=1

λi (x)ψ(xi ), x ∈ �,

(3.3)

whereµ(s) �
s j+1 − s

h
∈ (0, 1] when s ∈ [s j , s j+1), and {λi (x) ∈ [0, 1], i = 1, 2, . . . ,M}

is the set of coefficients in the unique convex linear combination x = ∑M
i=1 λi (x)xi with∑M

i=1 λi (x) = 1. This convex linear combination is produced also in terms of the vertices of
the simplex where x is located. Obviously, wk

h = vk
h on G × S.

Theorem 3.1 Suppose that all hypotheses of Theorem 1.1 hold. Let wh, w
k
h be the solutions

to (2.1) and (3.3) on �× S, respectively. Then we have, for any (x, s j ) ∈ �× S, that
∣∣∣wh(x, s j )− wk

h(x, s j )

∣∣∣ ≤ C

(
k

h
+ k

)
, (3.4)

where C � max{T Cmax, Lψ } is independent of h, k.

Proof For any (x, s j ) ∈ �×S, suppose that x lies in some simplex Tix . Let x = ∑
i∈Ix

λi (x)xi

be the unique convex linear combination which is produced in terms of the vertices of Tix ,
where

Ix � {i | xi ∈ Tix , i = 1, 2, . . . ,M}.
Then

‖x − xi‖ ≤ k for any i ∈ Ix .

Next, by Definition 3.3, for any u ∈ U and j ∈ {0, 1, . . . , N − 1}, it has

wk
h

(
M∑

l=1

λl
i (u, s j )xl , s j+1

)
=

M∑
l=1

λl
i (u, s j )w

k
h(xl , s j+1),
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where
{
λl

i (u, s j ) ∈ [0, 1], 1 ≤ l ≤ M
}

is the set of coefficients in the unique convex linear

combination xi + h f (xi , s j , u) = ∑M
l=1 λ

l
i (u, s j )xl with

∑M
l=1 λ

l
i (u, s j ) = 1. Once again,

this convex linear combination is produced in terms of the vertices of the simplex where
xi + h f (xi , s j , u) is located.

It follows from (ii) of Proposition 2.1 that∣∣wh(x, s j )− wh(xi , s j )
∣∣ ≤ Cmax‖x − xi‖, ∀ i ∈ Ix , j = 0, 1, . . . , N − 1.

When j = N , it has

∣∣∣wh(x, sN )− wk
h(x, sN )

∣∣∣ =
∣∣∣∣∣∣ψ(x)−

∑
i∈Ix

λi (u, sN )ψ(xi )

∣∣∣∣∣∣
≤

∑
i∈Ix

λi (u, sN )|ψ(x)− ψ(xi )| ≤ Lψk. (3.5)

For any j ∈ {0, 1, . . . , N − 1}, by above justified facts and Eqs. (2.1), (3.2)–(3.3), we
have, with iteration, that∣∣∣wh(x, s j )− wk

h(x, s j )

∣∣∣ ≤
∑
i∈Ix

λi (x)
{∣∣wh(x, s j )−wh(xi , s j )

∣∣+∣∣∣wh(xi , s j )−wk
h(xi , s j )

∣∣∣}

≤ Cmaxk +
∑
i∈Ix

λi (x)
∣∣∣wh(xi , s j )− wk

h(xi , s j )

∣∣∣

= Cmaxk +
∑
i∈Ix

λi (x)

∣∣∣∣∣min
u∈U

{
hL(xi , s j , u)+ wh(yu, s j+1)

}

− min
u∈U

{
hL(xi , s j , u)

M∑
l=1

λl
i (u, s j )w

k
h(xl , s j+1)

}∣∣∣∣∣

≤ Cmaxk +
∑
i∈Ix

λi (x)max
u∈U

∣∣∣∣∣wh(yu, s j+1)

−
M∑

l=1

λl
i (u, s j )w

k
h(xl , s j+1)

∣∣∣∣∣

= Cmaxk +
∑
i∈Ix

λi (x)max
u∈U

∣∣∣∣∣wh(yu, s j+1)

− wk
h

(
M∑

l=1

λl
i (u, s j )xl , s j+1

)∣∣∣∣∣
= Cmaxk +

∑
i∈Ix

λi (x)max
u∈U

∣∣∣wh(yu, s j+1)− wk
h(yu, s j+1)

∣∣∣

≤ Cmaxk + sup
z1∈�

∣∣∣wh(z1, s j+1)− wk
h(z1, s j+1)

∣∣∣
≤ 2Cmaxk + sup

z1∈�
sup
z2∈�

∣∣∣wh(z2, s j+2)− wk
h(z2, s j+2)

∣∣∣
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= 2Cmaxk + sup
z2∈�

∣∣∣wh(z2, s j+2)− wk
h(z2, s j+2)

∣∣∣
≤ . . .

≤ (N − j)Cmaxk + sup
zN− j ∈�

∣∣∣wh(zN− j , sN )− wk
h(zN− j , sN )

∣∣∣

≤ (N − j)Cmaxk + Lψk ≤ T Cmax
k

h
+ Lψk

≤ C

(
k

h
+ k

)
, where C � max{T Cmax, Lψ }. (3.6)

Notice that in the above, the convex linear combination yu � xi + h f (xi , s j , u) = ∑M
l=1 λ

l
i

(u, s j )xl is produced in the same way as in (3.2). The proof is completed by (3.5) and (3.6).
�


Theorem 3.2 Suppose that all hypotheses of Theorem 1.1 hold. Let k = O(h1+γ ) for some
constant γ > 0, and let w be the viscosity solution of (1.7), wk

h the solution of (3.3). Then

lim
h→0+w

k
h = w uniformly on �× [0, T ].

Proof First, when s = T , by (3.4), we have, for any x ∈ �, that
∣∣wk

h(x, T )− w(x, T )
∣∣ ≤

∣∣∣wk
h(x, T )− wh(x, T )

∣∣∣ + |wh(x, T )− w(x, T )|

=
∣∣∣wk

h(x, T )− wh(x, T )
∣∣∣ ≤ C

(
k

h
+ k

)

= O
(
hγ + h1+γ ) → 0 as h → 0+.

(3.7)

Next, for any s ∈ [0, T ), define µ(s) = s jh,s+1 − s

h
. Then

µ(s) ∈ (0, 1] and s = µ(s)s jh,s + (1 − µ(s))s jh,s+1.

By Eq. (3.3), for any x ∈ �,∣∣∣wk
h(x, s)− w(x, s)

∣∣∣ ≤ µ(s)
∣∣∣wk

h(x, s jh,s )− w(x, s)
∣∣∣

+(1 − µ(s))
∣∣∣wk

h(x, s jh,s+1)− w(x, s)
∣∣∣ , (3.8)

and (we treat only s jh,s term)∣∣∣wk
h(x, s jh,s )− w(x, s)

∣∣∣ ≤
∣∣∣wk

h(x, s jh,s )− wh(x, s jh,s )

∣∣∣
+ ∣∣wh(x, s jh,s )− wh(x, s)

∣∣ + |wh(x, s)− w(x, s)|
� I1 + I2 + I3. (3.9)

By (3.4), the term

I1 �
∣∣∣wk

h(x, s jh,s )− wh(x, s jh,s )

∣∣∣ ≤ C

(
k

h
+ k

)
= O

(
hγ + h1+γ ) → 0 as h → 0+.

By (iv) of Proposition 2.1 and Theorem 2.1, respectively, the terms I2 and I3 converge to 0
uniformly on �× [0, T ] as h → 0+. The proof is then completed by (3.7)–(3.9). �
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4 Approximation of optimal feedback control

In this section, we first develop the corresponding dynamic programming principle for the
time-discretization scheme. Based on the approximations of the viscosity solution discussed
in Sects. 2 and 3, we are able to construct the optimal feedback controls for the corresponding
discrete control systems. The convergence of the discrete optimal feedback control to the
continuous counterpart is then followed by referring to the infinite horizon case discussed
in [15].

4.1 Time-discretization case

We first consider the time-discretization case. Recall that for each given large positive inte-
ger N , [0, T ] is subdivided into N equal sub-intervals and s j = jh, j = 0, 1, . . . , N ,
where h = T/N < 1. Recall that for any s ∈ [0, T ), jh,s is the unique integer such that
s ∈ [s jh,s , s jh,s+1). Let

t0 = s, tl = s jh,s+l , l = 1, 2, . . . , N − jh,s, h0 = s jh,s+1 − s, hl = h,

l = 1, 2, . . . , N − jh,s − 1.

For any x ∈ R
n , consider the time-discretization counterpart for control system (1.4)

which starts from (x, s):{
yl+1 = yl + hl f (yl , tl , ul), l = 0, 1, . . . , N − jh,s − 1,
y0 = x,

(4.1)

where ul = uh(tl), yl = ytl , uh(·) ∈ �s . The cost functional J h
x,s and value function vh to

the discrete system (4.1) are defined, respectively, by

J h
x,s (uh(·)) =

N− jh,s−1∑
l=0

hl L(yl , tl , ul)+ ψ(yN− jh,s ), (4.2)

and

vh(x, s) = inf
uh(·)∈�s

J h
x,s (uh(·)) . (4.3)

Lemma 4.1 [Time-discretization dynamic programming principle] Suppose that all hypoth-
eses of Theorem 1.1 hold. Let vh be defined as (4.3). Then for i = 1, 2, . . . , N − jh,s − 1,

vh(x, s) = min
u0,...,ui−1∈U

{
i−1∑
l=0

hk L(yl , tl , ul)+ vh(yi , ti )

}
, ∀ (x, s) ∈ R

n × [0, T ).

(4.4)

Proof The proof is similar to that of Lemma 2.1 of [16]. We omit it here. �

Corollary 4.1 Let i = 1 in Lemma 4.1. Then (4.4) reduces to the time-discretization scheme
(2.1) in Sect. 2:

⎧⎪⎪⎨
⎪⎪⎩

vh(x, s) = min
u∈U

{(s j+1 − s)L(x, s, u)+ vh(x + (s j+1 − s) f (x, s, u), s j+1)},
x ∈ R

n, s ∈ [s j , s j+1), j = 0, 1, . . . , N − 1,

vh(x, T ) = ψ(x), x ∈ R
n .
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By Corollary 4.1, vh ≡ wh on R
n × [0, T ]. Due to this fact, we will use wh instead of vh

in what follows. Consider the following subset of U

A1(x, s) = min‖·‖
{
u ∈ U| wh(x, s) = (s j+1 − s)L(x, s, u)

+wh
(
x + (s j+1 − s) f (x, s, u), s j+1

)}
,

x ∈ R
n, s ∈ [s j , s j+1), j = 0, 1, . . . , N − 1. (4.5)

A1(x, s) is a subset of controls with minimal energy which satisfy the time-discretization
scheme (2.1). By the assumption of (1.8), for any (x, s) ∈ R

n ×[0, T ), A1(x, s) is not empty.
It is remarked that A1(x, s) may not be a singleton, but we can choose any element a1(x, s)
of A1(x, s) ⊂ U ⊂ R

m , to determine the minimal energy control function m∗
h by

m∗
h(x, s) = a1(x, s), x ∈ R

n, s ∈ [s j , s j+1), j = 0, 1, . . . , N − 1. (4.6)

In this sense the control m∗
h is well defined on R

n × [0, T ).
The time-discretization counterpart for control system (1.1) is the special case of control

system (4.1) with x = z and s = jh,s = 0:{
y j+1 = y j + h f

(
y j , s j , u∗

h(s j )
)
, j = 0, 1, . . . , N − 1,

y0 = z,
(4.7)

in which z ∈ R
n is given and the optimal feedback control law u∗

h is taken as

u∗
h(t) = u∗

j � m∗
h

(
y j , s j

)
, t ∈ [s j , s j+1), j = 0, 1, . . . , N − 1. (4.8)

Here in order to distinguish the solution of (4.1) that starts from (x, s), we use y j ≈ y(s j )

to denote the solution of system (4.7).
Now we state the convergence result.

Theorem 4.1 [Time-discretization optimal feedback control] Suppose that all hypotheses of
Theorem 1.1 hold. Let u∗

h be defined as (4.8) and wh be the solution of (2.1). Then for any
given z ∈ R

n,

wh(z, 0) ≤ J h
z,0 (uh(·)) , ∀ uh(·) ∈ �,

wh(z, 0) = J h
z,0

(
u∗

h(·)
)
,

where J h
z,0 is defined by (4.2).

Proof The first assertion follows from the following argument

wh(z, 0) = min
u∈U

{hL(z, 0, u)+ wh (z + h f (z, 0, u), s1)} ≤ hL(z, 0, u0)+ wh(y1, s1)

= hL(y0, s0, u0)+ min
u∈U

{hL(y1, s1, u)+ wh (y1 + h f (y1, s1, u), s2)}
≤ hL(y0, s0, u0)+ hL(y1, s1, u1)+ wh(y2, s2)

≤ . . .

≤
N−1∑
l=0

hL(yl , sl , ul)+ wh(yN , sN ) = J h
z,0 (uh(·)) , (4.9)

where ul = uh(sl), l = 0, 1, . . . , N − 1, and yl is the solution of (4.1) with x = z and
s = jh,s = 0.
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For the second assertion, we choose uh(·) = u∗
h(·). Then ul = u∗

l = m∗
h

(
yl , sl

)
and

yl = yl , l = 0, 1, . . . , N −1, where yl is the solution of (4.7). By the definition of m∗
h

(
yl , sl

)
,

all inequalities in (4.9) become equalities. The result then follows. �

Theorem 4.2 [Minimizing sequence of continuous optimal feedback control] Suppose that
all hypotheses of Theorem 1.1 hold. Let u∗

h be defined as (4.8). Then for any given z ∈ R
n,

lim
h→0+ Jz,0

(
u∗

h(·)
) = inf

u(·)∈� Jz,0 (u(·)) ≡ w(z, 0), (4.10)

where Jz,0 is defined by (1.5).

Proof We claim that (4.10) is equivalent to saying that

lim
h→0+ Jz,0

(
u∗

h(·)
) = lim

h→0+ J h
z,0

(
u∗

h(·)
) ≡ lim

h→0+wh(z, 0) = w(z, 0). (4.11)

Actually,∣∣∣Jz,0
(
u∗

h(·)
) − J h

z,0

(
u∗

h(·)
)∣∣∣

≤
∣∣∣∣∣∣

T∫
0

L
(
y∗(t), t, u∗

h(t)
)

dt + ψ
(
y∗(T )

) −
N−1∑
j=0

hL
(

y j , s j , u∗
j

)
− ψ

(
yN

)∣∣∣∣∣∣

≤
∣∣∣∣∣∣

T∫
0

L
(
y∗(t), t, u∗

h(t)
)

dt −
N−1∑
j=0

hL
(

y j , s j , u∗
j

)∣∣∣∣∣∣ +
∣∣∣ψ(y∗(T ))− ψ

(
yN

)∣∣∣
� I4 + I5, (4.12)

where y∗(·) is the solution of system (1.1) with control u∗
h(·) defined by (4.8), u∗

j =
m∗

h

(
y j , s j

)
is determined by (4.5)–(4.6) and y j is the solution of system (4.7). The proof

will be accomplished if we can show that∥∥∥y∗(t)− y j
∥∥∥ ≤ CT h, t ∈ [s j , s j+1], ∀ j = 0, 1, . . . , N − 1. (4.13)

In fact,

I4 ≤
N−1∑
j=0

s j+1∫
s j

∣∣∣L (
y∗(t), t, u∗

j

)
− L

(
y j , s j , u∗

j

)∣∣∣ dt

≤
N−1∑
j=0

s j+1∫
s j

L L

(∥∥∥y∗(t)− y j
∥∥∥ + |t − s j |

)
dt ≤ T L L(CT + 1)h,

(4.14)

and

I5 = ∣∣ψ (y∗(T ))− ψ
(
yN

)∣∣ ≤ Lψ
∥∥y∗(T )− yN

∥∥ ≤ LψCT h, (4.15)

where CT is a constant independent of h. (4.11) then follows from (4.12) and (4.14)–(4.15).
Now we check (4.13). Define

z∗(t) = y j , t ∈ [s j , s j+1), j = 0, 1, . . . , N − 1.
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Since
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y∗(t) = y∗(s j )+
t∫

s j

f
(

y∗(τ ), τ, u∗
j

)
dτ, t ∈ [s j , s j+1],

y j+1 = y j + h f
(

y j , s j , u∗
j

)
, j = 0, 1, . . . , N − 1,

and

∥∥y∗(s j )−y j
∥∥≤

∥∥∥y∗(s j−1)−y j−1
∥∥∥ +

s j∫
s j−1

∣∣∣ f
(

y∗(τ ), τ, u∗
j−1

)
− f

(
y j−1, s j−1, u∗

j−1

)∣∣∣ dτ

≤
∥∥∥y∗(s j−1)− y j−1

∥∥∥ + L f

s j∫
s j−1

∥∥∥y∗(τ )− y j−1
∥∥∥ dτ + L f h2, 1 ≤ j ≤ N ,

we have, for any t ∈ [s j , s j+1), j ∈ {0, 1, . . . , N − 1}, that

‖y∗(t)− z∗(t)‖ =
∥∥∥y∗(t)− y j

∥∥∥ ≤
∥∥∥y∗(t)− y j+1

∥∥∥ + M f h

≤
∥∥∥y∗(s j )− y j

∥∥∥ +
t∫

s j

∣∣∣ f
(

y∗(τ ), τ, u∗
j

)
− f

(
y j , s j , u∗

j

)∣∣∣ dτ + 2M f h

≤
∥∥∥y∗(s j )− y j

∥∥∥ + L f

t∫
s j

(‖y∗(τ )− y j‖ + |τ − s j |
)

dτ + 2M f h

≤
∥∥∥y∗(s j )− y j

∥∥∥ + L f

t∫
s j

‖y∗(τ )− z∗(τ )‖ dτ + L f h2 + 2M f h

≤
∥∥∥y∗(s j−1)− y j−1

∥∥∥ + L f

t∫
s j−1

‖y∗(τ )− z∗(τ )‖ dτ + 2L f h2 + 2M f h

≤ . . .

≤ L f

t∫
s0

‖y∗(τ )− z∗(τ )‖ dτ + ( j + 1)L f h2 + 2M f h

≤ L f

t∫
0

‖y∗(τ )− z∗(τ )‖ dτ + CT h, (4.16)

where CT = T L f + 2M f . Apply the Gronwall’s inequality to (4.16), to obtain (4.13):

‖y∗(t)− z∗(t)‖ ≤ CT h, ∀ t ∈ [s j , s j+1], j = 0, 1, . . . , N − 1

by setting CT = CT eT L f = (T L f + 2M f )eT L f . The proof is complete. �
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4.2 Time-space discretization case

Now let us consider the time-space discretization case. Recall that in Sect. 3, � ⊂ R
n is

assumed to be a closed bounded polyhedron such that for all sufficiently small h,

x + h f (x, s, u) ∈ �, ∀ (x, s, u) ∈ �× [0, T ] × U.

For (xi , s j ) ∈ G × S, vk
h(xi , s j ) is defined by (3.2), while for (x, s) ∈ �× [0, T ], wk

h(x, s)
is defined by (3.3), and wk

h = vk
h on G × S.

By (3.3), for (xi , s j ) ∈ G × S, we can rewrite (3.2) as
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wk
h(xi , s j ) = min

u∈U

{
hL(xi , s j , u)+ wk

h

(
xi + h f (xi , s j , u), s j+1

)}
,

i = 1, 2 . . . ,M, j = 0, 1, . . . , N − 1,

wk
h(xi , T ) = ψ(xi ), i = 1, 2 . . . ,M.

(4.17)

Equations (2.1) and (4.17) motivate us to define P and Pk , respectively, as

P(x, s j , u) � hL(x, s j , u)+ wh
(
x + h f (x, s j , u), s j+1

)
, (x, s j , u) ∈ �× S\{T } × U,

(4.18)

and

Pk(x, s j , u) � hL(x, s j , u)+ wk
h

(
x + h f (x, s j , u), s j+1

)
, (x, s j , u) ∈ �× S\{T } × U.

(4.19)

Notice that wk
h in the definition of Pk can be determined by (3.3) and (3.2).

The following Corollary 4.2 is a consequence of Theorem 3.1.

Corollary 4.2 Suppose that all hypotheses of Theorem 1.1 hold. Let C be the constant in
Theorem 3.1. Then∣∣∣Pk − P

∣∣∣ ≤ C

(
k

h
+ k

)
→ 0 uniformly on �× S\{T } × U as k → 0+.

Next, for any x ∈ � and j ∈ {0, 1, . . . , N − 1}, it follows from the assumptions (1.8) that
there exist at least one control m∗

h(x, s j ) ∈ U and one m∗
k(x, s j ) ∈ U such that

P
(
x, s j ,m∗

h(x, s j )
) = min

u∈U

P(x, s j , u) ≡ wh(x, s j ) by (2.1), (4.20)

and

Pk (x, s j ,m∗
k (x, s j )

) = min
u∈U

Pk(x, s j , u). (4.21)

Consider the following subset of U:

A2(x, s j ) = min‖·‖

{
v ∈ U| Pk (x, s j , v

) = min
u∈U

Pk(x, s j , u)

}
. (4.22)

This is a subset of controls with minimal energy that satisfy (4.21). The non-emptiness of
A2(x, s j ) is guaranteed by assumptions (1.8). It is also remarked that A2(x, s j ) may not
be a singleton, but we can choose any one element a2(x, s j ) ∈ A2(x, s j ), to determine the
minimal energy control function m∗

k by

m∗
k(x, s j ) = a2(x, s j ), x ∈ �, j = 0, 1, . . . , N − 1. (4.23)
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In this way, the control m∗
k is well defined on �× S\{T }.

Now, we can define a feedback control law u∗
k for time-space discretization system

u∗
k(s) = u∗

k, j � m∗
k

(
y j , s j

)
, s ∈ [s j , s j+1), j = 0, 1, . . . , N − 1, (4.24)

where again y j ≈ y(s j ) denotes the solution of the following system with control u∗
k deter-

mined by (4.24) without diffusion:

{
y j+1 = y j + h f

(
y j , s j , u∗

k(s j )
)
, j = 0, 1, . . . , N − 1,

y0 = z,
(4.25)

where z ∈ � is given. Equation 4.25 is also the discrete counterpart for control system (1.1).

Theorem 4.3 [Minimizing sequence of time-discretization optimal feedback control] Sup-
pose that all hypotheses of Theorem 1.1 hold. Let u∗

k be defined as (4.24). Then for any given
z ∈ �,

∣∣∣J h
z,0

(
u∗

k(·)
) − wh(z, 0)

∣∣∣ ≤ 4T C
k

h2 → 0 as k → 0+, (4.26)

where J h
z,0 is defined by (4.2) and C is the constant in Theorem 3.1.

Proof From (4.19), we have, for all j = 0, 1, . . . , N − 1 and x ∈ �, that

hL
(
x, s j ,m∗

k(x, s j )
) = −wk

h

(
x + h f (x, s j ,m∗

k (x, s j )), s j+1
)

+ Pk (x, s j ,m∗
k(x, s j )

)
, (4.27)

where m∗
k(x, s j ) is determined by (4.22)–(4.23). Set x = y j in (4.27), where y j is the solution

of system (4.25), and summarize j from 0 to N − 1, to get

N−1∑
j=0

hL
(

y j , s j , u∗
k, j

)
=

N−1∑
j=0

[
−wk

h

(
y j + h f

(
y j , s j , u∗

k, j

)
, s j+1

)
+ Pk

(
y j , s j , u∗

k, j

)]
,

(4.28)

where u∗
k, j = m∗

k

(
y j , s j

)
.

By definitions of u∗
j = m∗

h

(
y j , s j

)
in (4.8) that is characterized by (4.5)–(4.6) and u∗

k, j =
m∗

k

(
y j , s j

)
in (4.24) that is characterized by (4.22)–(4.23), respectively, we have

P
(

y j , s j , u∗
k, j

)
− P

(
y j , s j , u∗

j

)
≥ 0,

Pk
(

y j , s j , u∗
k, j

)
− Pk

(
y j , s j , u∗

j

)
≤ 0.
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In view of the facts above, on the one hand, it follows from (4.20), (4.28), Theorem 3.1
and Corollary 4.2, that

I6 � J h
z,0

(
u∗

k(·)
)−wh(z, 0)

=
N−1∑
j=0

hL
(
y j , s j , u∗

k, j

)
+ψ

(
yN
)

−wh(z, 0)

=
N−1∑
j=0

[
−wk

h

(
y j+h f

(
y j , s j , u∗

k, j

)
, s j+1

)
+Pk

(
y j , s j , u∗

k, j

)]
+ψ

(
yN
)

−
⎛
⎝N−1∑

j=0

[
wh

(
y j , s j

)
−wh

(
y j+1, s j+1

)]
+ψ

(
yN
)⎞⎠

=
N−1∑
j=0

{[
−wk

h

(
y j+1, s j+1

)
+wh

(
y j+1, s j+1

)]
+
[
Pk

(
y j , s j , u∗

k, j

)
−P

(
y j , s j , u∗

j

)]}

=
N−1∑
j=0

{[
−wk

h

(
y j+1, s j+1

)
+wh

(
y j+1, s j+1

)]
+
[
Pk

(
y j , s j , u∗

k, j

)
−P

(
y j , s j , u∗

k, j

)]

+
[
P
(
y j , s j , u∗

k, j

)
−P

(
y j , s j , u∗

j

)]}

≥
N−1∑
j=0

{[
−wk

h

(
y j+1, s j+1

)
+wh

(
y j+1, s j+1

)]
+
[
Pk

(
y j , s j , u∗

k, j

)
−P

(
y j , s j , u∗

k, j

)]}

≥ −
N−1∑
j=0

2C

(
k

h
+k

)
= −2NC

(
k

h
+k

)
= −2T C(1 + h)

k

h2 ≥ −4T C
k

h2 , (4.29)

and on the other hand,

I6 =
N−1∑
j=0

{[
−wk

h

(
y j+1, s j+1

)
+wh

(
y j+1, s j+1

)]
+
[
Pk

(
y j , s j , u∗

k, j

)
−P

(
y j , s j , u∗

j

)]}

=
N−1∑
j=0

{[
−wk

h

(
y j+1, s j+1

)
+wh

(
y j+1, s j+1

)]
+
[
Pk

(
y j , s j , u∗

k, j

)
−Pk

(
y j , s j , u∗

j

)]

+
[

Pk
(

y j , s j , u∗
j

)
−P

(
y j , s j , u∗

j

)]}

≤
N−1∑
j=0

{[
−wk

h

(
y j+1, s j+1

)
+wh

(
y j+1, s j+1

)]
+
[

Pk
(

y j , s j , u∗
j

)
−P

(
y j , s j , u∗

j

)]}

≤
N−1∑
j=0

2C

(
k

h
+k

)
= 2NC

(
k

h
+k

)
= 2T C(1+h)

k

h2 ≤ 4T C
k

h2 . (4.30)

Combine (4.29) and (4.30) to give the required result (4.26). The proof is complete. �


123



J Glob Optim (2010) 46:395–422 415

It is pointed out that in Theorem 1.7 of [15] on p. 479–480, the convergence was concluded
by passing limit of k to zero directly in an equality similar to (4.28). This equality, using our
functions, is of the form:

N−1∑
j=0

hL
(

y j , s j , u∗
k, j

)
=

N−1∑
j=0

[
−wk

h

(
y j + h f

(
y j , s j , u∗

k, j

)
, s j+1

)
+ wk

h

(
y j , s j

)]
.

(4.28′)

Unfortunately, (4.28′) can not be obtained by the arguments used in [15]. The reason is that
it is admitted that

Pk
(

y j , s j , u∗
k, j

)
= wk

h(y
j , s j ) on � � y j ,

and then replace Pk
(

y j , s j , u∗
k, j

)
in (4.28) by wk

h(y
j , s j ) to get (4.28′). But in [15],

Pk
(

xi , s j , u∗
k, j

)
= wk

h(xi , s j ) is true only on node point set G = {xi } not on the whole �.

Notice that there is no time term s in [15] but the time term s has no influence. To sum
up, since we can only obtain (4.28) instead of (4.28′), the “unique minimum assumption” of
[15] is useless anymore. The key points to the result should be estimates (4.29) and (4.30),
which can be used to correct the gap in [15] as well.

Theorem 4.4 [Minimizing sequence of continuous optimal feedback control] Under the
assumptions of Theorem 4.3, let k = O(h2+γ ) for some constant γ > 0, and w the viscosity
solution of HJB equation (1.7). Then for any given z ∈ �,

Jz,0
(
u∗

k(·)
) → inf

u(·)∈� Jz,0 (u(·)) ≡ w(z, 0) as h → 0+, (4.31)

where Jz,0 is defined by (1.5).

Proof The proof is similar to that for Theorem 4.2. For the sake of completeness, here we
give a detailed proof.

For any given z ∈ �, we have
∣∣Jz,0

(
u∗

k(·)
) − w(z, 0)

∣∣ ≤
∣∣∣Jz,0

(
u∗

k(·)
) − J h

z,0

(
u∗

k(·)
)∣∣∣

+
∣∣∣J h

z,0

(
z, 0, u∗

k (·)
) − wh(z, 0)

∣∣∣ + |wh(z, 0)− w(z, 0)|
� I7 + I8 + I9. (4.32)

By (4.26), the term

I8 �
∣∣∣J h

z,0

(
u∗

k(·)
) − wh(z, 0)

∣∣∣ ≤ 4T C
k

h2 = O
(
hγ

) → 0 as h → 0+. (4.33)

The fact that the term I9 converges to 0 as h → 0+ is confirmed by Theorem 2.1. Hence,
only the term I7 needs to be addressed. Now,

I7 �
∣∣∣Jz,0

(
u∗

k(·)
) − J h

z,0

(
u∗

k(·)
)∣∣∣

≤
∣∣∣∣∣∣

T∫
0

L
(
y∗

k (t), t, u∗
k (t)

)
dt + ψ

(
y∗

k (T )
) −

N−1∑
j=0

hL
(

y j , s j , u∗
k, j

)
− ψ

(
yN

)∣∣∣∣∣∣
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≤
∣∣∣∣∣∣

T∫
0

L
(
y∗

k (t), t, u∗
k (t)

)
dt −

N−1∑
j=0

hL
(

y j , s j , u∗
k, j

)∣∣∣∣∣∣ +
∣∣∣ψ (

y∗
k (T )

) − ψ
(

yN
)∣∣∣

� I71 + I72, (4.34)

where y∗
k (·) is the solution of system (1.1) with control u∗

k(·) defined by (4.24), u∗
k, j =

m∗
k

(
y j , s j

)
is specified by (4.22)–(4.23), and again y j is the solution of system (4.25).

Similar to the estimate (4.13), we also have∥∥∥y∗
k (t)− y j

∥∥∥ ≤ CT h, t ∈ [s j , s j+1], ∀ j = 0, 1, . . . , N − 1.

Therefore,

I71 ≤
N−1∑
j=0

s j+1∫
s j

∣∣∣L (
y∗

k (t), t, u∗
k, j

)
− L

(
y j , s j , u∗

k, j

)∣∣∣ dt

≤
N−1∑
j=0

s j+1∫
s j

L L

(∥∥∥y∗
k (t)− y j

∥∥∥ + |t − s j |
)

dt ≤ T L L(CT + 1)h, (4.35)

and

I72 =
∣∣∣ψ (

y∗
k (T )

) − ψ
(

yN
)∣∣∣ ≤ Lψ

∥∥∥y∗
k (T )− yN

∥∥∥ ≤ LψCT h. (4.36)

The assertion (4.31) then follows from (4.32)–(4.36). �


5 Approximation algorithm

We now present an algorithm which summarizes the procedure for optimal feedback control
approximation developed in the preceding sections.

Note that only the full discretization scheme (3.2) can be used in numerical computa-
tion, whereas the scheme (2.1) is of theoretical significance only since the space variable
therein is not in discrete form. The algorithm calculates the viscosity solution and optimal
control-trajectory pairs.

5.1 The algorithm

Based on the full discretization scheme (3.2) and convex linear combination scheme (3.3),
we can now present the algorithm as follows.

Step 1: Initial partitioning on time and space. Let N > 0 be a fixed integer. Let S = {s j =
jh | j = 0, 1, . . . , N } define an equal-partition of [0, T ] with interval length
0 < h = T/N < 1. For q ∈ {0, 1, . . . , N }, denote by (uq , yq) the q-th optimal
control-trajectory pair.
The domain � ⊂ R

n is assumed to be a closed bounded polyhedron such that
for all sufficiently small h > 0 and all (x, s, u) ∈ � × [0, T ] × U, it holds that
x + h f (x, s, u) ∈ �. Let k = Ch2+γ be the size of space-discretization mesh,
where C, γ > 0 are arbitrarily appropriately given constants. Construct a regu-
lar triangulation of � that consists of a finite number of simplices {Ti } such that
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� = ∪i Ti and max
i

{diam(Ti )} = k. For numerical purpose, the regular triangula-

tion process could be completed once the size k is given.
Denote by xl , l = 1, 2, . . . ,M , the nodes of the triangulation. Set G = {xl | l =
1, 2, . . . ,M}.

Step 2: Calculating approximate viscosity solution. This is done by the finite difference
scheme in time-space mesh approximation via (3.2):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V j
i = hL j

i +
M∑

l=1

λ
l, j
i V j+1

l ,

u j
i ∈ arg inf

u∈U

{
Y j

i (u)
}
, where Y j

i (u) � hL(xi , s j , u)+
M∑

l=1

λl
i (u, s j )V

j+1
l ,

V N
i = ψ(xi )

(5.1)

for i = 1, 2, . . . ,M and j = N − 1, N − 2, . . . , 1, 0, where

V j
i = V (xi , s j ), L j

i = L
(

xi , s j , u j
i

)
, λ

l, j
i = λl

i

(
u j

i , s j

)

and
{
λl

i (u, s j ) ∈ [0, 1], l = 1, 2, . . . ,M
}

is the set of coefficients in the unique

convex linear combination xi + h f (xi , s j , u) = ∑M
l=1 λ

l
i (u, s j )xl with

∑M
l=1 λ

l
i

(u, s j ) = 1. This convex linear combination is produced in terms of the vertices
of the simplex where xi + h f (xi , s j , u) is located.

More precisely, since
{

V N
i

}M
i=1 is given, when

{
V j+1

i

}M

i=1
is known, then for any

i ∈ {1, 2, . . . ,M}, V j
i can be solved via (5.1) by the following sub-steps:

Step 2.1: Discretize the control domain U as a finite set Ud � {ul : l=0, 1, 2, . . .}
at a given size of control-space mesh d > 0.

Step 2.2: For a fixed u ∈ Ud , using a searching technique in numerical analysis,
one can find the simplex Ti0 where xi +h f (xi , s j , u) is located. By pro-
ducing the convex linear combination for xi + h f (xi , s j , u) in terms of
the vertices of simplex Ti0 , one can obtain the coefficients {λl

i (u, s j )}.
Step 2.3: Calculate Y j

i (u) for all u ∈ Ud , and set

V j
i = min

v∈Ud

{
Y j

i (v)
}
, A � min‖·‖

{
u ∈ Ud | Y j

i (u) = V j
i

}
.

It is obvious that V j
i = Y j

i

(
u j

i

)
for any u j

i ∈ A.

Repeat Steps 2.1–2.3 above for all i ∈ {1, 2, . . . ,M} from j = N − 1 to j = 0
to complete Step 2 and obtain the approximate viscosity solution on G × S:{{

V j
i

}M

i=1

}N

j=0
.

It is worth noting that mathematical programming is not used to solve the optimi-
zation problem (3.2).

Step 3: Calculating the optimal feedback control-trajectory pairs {(uq , yq)}N
q=0. For initial

setting, let y0 = z and set q = 0.
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Step 3.1: Calculating the q-th optimal feedback control uq .

Since yq and

{{
V j

i

}M

i=1

}N

j=0
are known, the q-th optimal feedback

control uq = u(sq) is determined by
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uq ∈ arg inf
u∈U

{
hL

(
yq , sq , u

)
+ W

(
yq + h f

(
yq , sq , u

)
, sq+1

)}
,

W
(
yq + h f

(
yq , sq , u

)
, sq+1

)
=

M∑
l=1
µl

q(u, sq)V
q+1

l via (3.3),

(5.2)

where
{
µl

q(u, sq) ∈ [0, 1], l = 1, 2, . . . ,M
}

is the set of coefficients

in the unique convex linear combination yq + h f
(
yq , sq , u

) = ∑M
l=1

µl
q(u, sq)xl with

∑M
l=1 µ

l
q(u, sq) = 1. Here again the convex linear

combination is produced in terms of the vertices of the simplex where
yq + h f

(
yq , sq , u

)
is located.

Note that in (5.2), the control uq is also chosen as the one with minimal
energy. It is remarked that such a control with minimal energy may not
be unique, but we can choose any one of them.
The calculation details are similar to those in Step 2.
After these steps, the q-th optimal feedback control-trajectory pair
(uq , yq) = (

u(sq), y(sq)
)

is obtained.
Step 3.2: Calculating the (q + 1)-th optimal trajectory yq+1.

Once uq = u(sq) is known, solve the state equation:

yq+1 − yq

h
= f (yq , sq , uq)

to obtain the (q + 1)-th optimal trajectory yq+1 = y(sq+1).
Step 3.3: Iterating for the next time instant. Let q = q + 1. If q = N , then

uq = uq−1, and end the procedure. Otherwise, go to Step 3.1. Repeat
the iteration to get all optimal feedback control-trajectory pairs:

{(
uq , yq)}N

q=0 = {(
u(sq), y(sq)

)}N
q=0 .

5.2 An example

We use the algorithm in Subsection 5.1 to solve the following optimal control problem:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′(t) = 2(1 − y(t))u(t), t ∈ (0, 1],
y(0) = z,

J (u(·)) =
1∫

0

|1 − y(t)|(1 + t)2u(t)2 dt + 2|1 − y(1)|,

min
u(·)∈�∗ J (u(·)), where �∗ � L∞([0, 1]; U) and U � [0, 1],

(5.3)

where z ∈ R is a given initial value.
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This system is considered since its optimal control is unique and can be obtained analyt-
ically. Thus, we can calculate the numerical results via the algorithm.

The HJB equation corresponding to (5.3) is given as⎧⎪⎪⎨
⎪⎪⎩

−ws(x, s)− inf
u∈U

{∇xw(x, s) · 2(1 − x)u + |1 − x |(1 + s)2u2} = 0,

(x, s) ∈ R × [0, 1),

w(x, 1) = 2|1 − x |, x ∈ R.

(5.4)

It admits a unique viscosity solution according to the uniqueness theorem [36].
It is easy to check that the function w ∈ C(R × [0, 1]) defined by

w(x, s) = |1 − x |(1 + s), (x, s) ∈ R × [0, 1] (5.5)

is a viscosity solution of (5.4). Notice that when z = 1, the control problem (5.3) becomes a
trivial case that y(u(·), ·) ≡ 1 on [0, 1] and J (u(·)) = 0 for any control function u(·) ∈ �∗.
We consider only the case of z �= 1. In this case, the unique optimal feedback control u∗(·)
and the corresponding optimal trajectory y∗(·) of the system (5.3) are given analytically by

u∗(z, t) = u∗ (y∗(z, t), t
) = 1

1 + t
, t ∈ [0, 1], (5.6)

and

y∗(z, t) = t2 + 2t + z

(1 + t)2
, t ∈ [0, 1]. (5.7)

To apply the algorithm, we should choose suitable space domain� that satisfies assump-
tion (3.1), i.e., for all sufficiently small h, x + h f (x, s, u) ∈ �, ∀ (x, s, u) ∈ �× [0, 1] ×
[0, 1]. For our example, where � = [0, 1], assumption (3.1) is valid if h < 1/2. Since for
any (x, s, u) ∈ [0, 1] × [0, 1] × [0, 1], we have

1 − 2hu > 0, x + h f (x, s, u) = x + 2h(1 − x)u = (1 − 2hu)x + 2hu ≥ 0,

and

x + h f (x, s, u) = x + 2h(1 − x)u = (1 − 2hu)x + 2hu ≤ 1 − 2hu + 2hu = 1.

Let h = 0.01, and k = d = 0.005. Using the algorithm, we obtain numerically the
viscosity solution and the optimal feedback control-trajectory pairs of control problem (5.3).
The results are presented in Figs. 1, 2, and 3 for two different initial values (z = 0.30 and
z = 0.65). The algorithm was implemented using MATLAB programming language.

Figure 1 displays the numerical solution of the viscosity solution (5.5). Figures 2 and 3
show the numerical solutions of the optimal feedback control and trajectory functions (5.6)
and (5.7) with the initial state z = 0.3 and z = 0.65, respectively. In Table 1, we list the
computed errors in the maximum norm between the numerical solutions and analytical solu-
tions ofw, u∗ and y∗. We see that the numerical solutions obtained by the algorithm are very
close to the analytical solutions. The comparison indicates the effectiveness of the algorithm
we proposed.

It should be pointed out that not all the conditions of Theorem 1.1 are satisfied in this
example. More precisely, the boundedness property for f, L , ψ in (1.8) are not satisfied.
Nevertheless, the numerical result is found to be still satisfactory. The conditions are placed
for the sake of mathematical rigor in the proof of Theorem 1.1. The simulation results suggest
that our algorithm may be applicable to a larger class of systems.
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Fig. 2 Numerical solutions of optimal feedback control and trajectory functions with z = 0.3
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Fig. 3 Numerical solutions of optimal feedback control and trajectory functions with z = 0.65
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Table 1 The computed errors in
the maximum norm between the
numerical solutions and
analytical solutions for w, u∗
and y∗

Error Viscosity solution Control Trajectory

z = 0.3 7.5e−3 3.9e−3 5.0e−3

z = 0.65 7.5e−3 1.9e−3 5.0e−3

6 Concluding remarks and future works

We design two discretization schemes that calculate approximations to the viscosity solu-
tion of the evolutive HJB equation satisfied by the value function of a general continuous
finite-dimensional control system with finite horizon cost functional. One scheme is based
on the time difference approximation and the other on the time-space approximation. The
convergence result is established for each scheme by the corresponding discrete dynamic pro-
gramming. We show that the optimal control obtained from each scheme is “almost optimal”
to the continuous system.

The merit of this work lies in its success in establishing convergence of the algorithm
that leads to approximation of the optimal feedback control by dynamic programming for
the problem with finite horizon cost functional without discount factor, while in literature,
the results of the approximation of optimal feedback control are available only for infinite
horizon cost functional problems. Moreover, for the approximation of the HJB equation, the
discount factor in the cost functional that is key for convergence in literature is removed.
An immediate issue then is to design such a simple algorithm that can be easily applied in
practical optimal control problems. It is also worth investigating the relationship between the
algorithm designed in this paper and the existing simple algorithms (such as the one in [21])
for which there is no convergence result available yet.
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